Exploring the potential of reed as a biofuel crop in the Netherlands

Vasco Diogo (SPINlab, VU Amsterdam)
Tom Kuhlman (LEI, WUR)
Eric Koomen (SPINlab, VU Amsterdam)
Outline

- Introduction
 - Reed as a bioenergy crop
 - Potential for reed in the Netherlands?
- Methodology
 - Spatial exploration: simulating future land-use
 - Economics of reed cultivation
 - Scenarios
- Results
- Conclusions
Introduction

- EU Directive on Renewable Energy targets by 2020:
 - 20% of total energy consumption
 - 10% of total transport fuel consumption

- Reed as a bioenergy crop:
 - Combustion for district heating and electricity generation
 - Biogas (co-digestion with manure)
 - Bioethanol (2nd generation biofuel)
Potential for reed in the Netherlands?

- Indigenous in the Netherlands
- Grows well in wet areas
 - Salt tolerance
 - Suitable for peat soils
- Bioenergy crops are generally low-value products best grown on a large scale
- However, the Netherlands is a densely populated country with high pressure on land and an advanced agricultural sector specialized in high-value crops
Spatial exploration

- simulation of local competition for land according to economic performance

![Flowchart showing biophysical factors, land use, economic factors, and non-spatial factors connected to future land-use with specific examples of soil type, current land-use, infrastructure and accessibility, and factors like available technological options, production costs, crop market prices, and discount rate.](Image)
Economics of reed as bioenergy crop

- Yield (dry biomass): 15 t.ha⁻¹.yr⁻¹ without fertilizer
- Gross revenues (€.ha⁻¹.yr⁻¹):
 - Ethanol 1,151
 - Combustion 475
 - Biogas 625
- Total production costs (€.ha⁻¹.yr⁻¹)
 - Ethanol 2,387
 - Combustion 1,285
 - Biogas 1,900
Reed as a multifunctional land-use

- Water buffering
 - Integrated water management – water storage during floods and dry periods
- Surface water purification
 - Absorption of nitrates and phosphates
- Carbon sequestration above and below ground
- Avoids peat oxidation
 - Subsidence
 - CO$_2$ emission (loss of organic matter)
 - Risk of saline seepage
Peat soils in the Netherlands
Economics of multi-functional reed cultivation

- Additional benefits (€.ha$^{-1}$.yr$^{-1}$, based in previous cost-benefit analysis):
 - Water storage (where applicable): 400
 - Water purification: 400
 - Net effect on GHG emissions: 245
 - Net effect on GHG emissions in peat soils: 271
Scenarios for 2030

Based on a previous study for EC’s DG-ENV

1. Reference: IPCC B1
 - Ongoing policies, incl. liberalization of agricultural trade
2. High oil prices and strong climate change
3. Biofuel policies
 - Promotion of biofuels in EU and rest of the world
4. Soil protection and climate mitigation policies
 - Increased promotion of water buffering and sustainable use of peat soils
Results

Scenario 1: IPCC B1

Scenario 2: High oil prices & climate change
Results

Scenario 3: Biofuel policy

Scenario 4: Soil protection and climate change adaptation
Conclusions

- Reed cultivation for energy purposes not economically viable in the Netherlands under current conditions
- Only attractive if benefits from additional functions are also taken into account
 - Particularly in peat soils
- Future developments in terms of energy prices, climate change and policies may make reed more economically attractive
 - Combination of biofuel policies with environmental measures
Conclusions

- Two systems of reed cultivation could be envisaged:
 1) Large-scale dedicated cultivation of reed in specialized farms
 - However, landscape issues should be taken into account
 2) Combination of livestock production and reed cultivation
 - Small-scale production of biogas through co-digestion of reed and manure
Thank you